来源Leetcode第162题寻找峰值
峰值元素是指其值大于左右相邻值的元素。
给定一个输入数组 nums
,其中 nums[i] ≠ nums[i+1]
,找到峰值元素并返回其索引。
数组可能包含多个峰值,在这种情况下,返回任何一个峰值所在位置即可。
你可以假设 nums[-1] = nums[n] = -∞
。
示例 1:
1 | 输入: nums = [1,2,3,1] |
一次扫描
因为 nums[-1]
看做负无穷,所以从第 0
个元素开始,它一定是上升的趋势,由于我们要找峰顶,所以当它第一次出现下降,下降前的值就是我们要找的了。
如果它一直上升到最后一个值,又因为 nums[n]
看做负无穷,所以最后一个值就可以看做一个峰顶。
题解的解法比我提交时的答案相对的少了很多无谓的判断及比较。
1 | public int findPeakElement(int[] nums) { |
二分查找
我们可以将 nums 数组中的任何给定序列视为交替的升序和降序序列。通过利用这一点,以及“可以返回任何一个峰作为结果”的要求,我们可以利用二分查找来找到所需的峰值元素。
在简单的二分查找中,我们处理的是一个有序数列,并通过在每一步减少搜索空间来找到所需要的数字。在本例中,我们对二分查找进行一点修改。首先从数组 nums中找到中间的元素 mid。若该元素恰好位于降序序列或者一个局部下降坡度中(通过将 num**s[i] 与右侧比较判断),则说明峰值会在本元素的左边。于是,我们将搜索空间缩小为 mid 的左边(包括其本身),并在左侧子数组上重复上述过程。
若该元素恰好位于升序序列或者一个局部上升坡度中(通过将 num**s[i] 与右侧比较判断),则说明峰值会在本元素的右边。于是,我们将搜索空间缩小为 mid 的右边,并在右侧子数组上重复上述过程。
就这样,我们不断地缩小搜索空间,直到搜索空间中只有一个元素,该元素即为峰值元素。
1 | public class Solution { |